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Abstract— We present a new basis for anal-
ysis of music. The basis vectors are sam-
pled real waveforms of fixed frequency inside
a Gaussian envelope. Their frequencies and
time localizations are induced by a tiling of
the time-frequency plane well adapted to mu-
sic. Through a careful investigation of their
properties they are subsequently slightly mod-
ified in order to give a stable system, without
losing their time-frequency localization. Our
new basis discriminates semitones, detects the
overtones as well as the attack of notes, and
gives a sparse representation of the signal. It
will enhance the performance of all kinds of dig-
ital audio processors, and provide a useful tool
for numerous multimedia applications.
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1. INTRODUCTION

Having a representation system for music that gives
information both on the time and the frequency of
the notes that are played, will give an optimal repre-
sentation of the signal. The search of bases for joint
time-frequency representation of music is still an open
problem. See for instance, the comparison of methods
for onset detection in [1].

Transforms related to Fourier theory, such as FFT,
DCT and MDCT, the latter being used in MPEG au-
dio compressors[7], divide the spectrum of a signal into
regular frequency intervals that do not match our au-
ditory system, since our perception of pitch is loga-
rithmic.

Gabor systems have long been used. Placed on a
uniform time-frequency grid, they either give an un-
stable system or a redundant representation of the sig-
nal. Different approaches have been made to modify
the grid [11], [5].

The construction of bases that discriminate musical
notes, requires that their spectra be mainly supported
on frequency intervals that have a constant relative
bandwidth, and this constant is irrational. In order
to have good resolution in time, the support of these
bases must vary with the frequency.

Discrete dyadic wavelets [3] do have a constant
relative bandwidth, and they provide good time-
localization, but they cannot discriminate the notes
in an octave.

These mentioned transforms do not offer an opti-
mal represention of digitized music signals that can be
posteriorly used for digital audio applications, such as
pitch detection or melody identification.

We present a new basis for the representation of
digitized music. It is induced by a special tiling of the
time-frequency plane well adapted to music. Our tiling
is less general than the tiling proposed in [2] for the
construction of orthonormal bases, but is specifically
built for music representation, and our basis has better
frequency localization.

Essentially our basis is composed of shifts in time
and frequency of one fundamental wavelet, which is a
modification of a Morlet wavelet [8], having improved
frequential resolution. Although the latter is known to
be unstable on a uniform tiling of the time-frequency
plane, we modify both the tiling and the wavelet in
order to obtain stability.

In Sections 2-4 we develop the construction of our
basis. This was outlined in the first author’s earlier
work [9] and grade thesis [10]. In Section 2 we define
an ideal tiling for music analysis, which is irrational.
In section 3 we construct our first basis. Subsequent
modifications of the tiling (taking a rational approx-
imation), and of the wavelet system ( taking projec-
tions to reduce correlations between basis vectors) will
give a stable basis (Section 4). In Section 5 we present
a simple, illustrative test, and our concluding remarks.

2. An Ideal Tiling of the Time-Frequency
Plane

The pitch or frequency of a note is measured in cycles
per second, or Hertz (Hz); for example the note A4 (La
central) has 440 Hz. Our perception of pitch is loga-
rithmic: to our ear, the three notes 220 Hz, 440 Hz
and 880 Hz sound equally spaced apart, yet their fre-
quencies are related by a multiplicative factor. When
the frequencies of two notes differ by a factor of 2, as
in this case, we have an octave. In the twelve-tone
equal-tempered scale there are 12 notes or semitones
per octave, and the frequency ratio of 2 adjacent notes
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is constant: we call this constant a0. Take for example
A4 as the first note of an octave: then the second note,
a semitone above A4, will have frequency 440 a0 Hz,
the third 440 a2

0 Hz, and so on. The thirteenth note, an
octave above A4, will have frequency 440 a12

0 = 440×2
Hz. This means that a0 = 12

√
2, an irrational number.

Let f c
1 be the first note of an octave. Then the other

notes can be obtained from

f c
j+1 = a0 f c

j for j = 1 . . . 11. (1)

In table 1 we list the notes and frequencies of an
octave beginning with C3 (Do).

Table 1: Notes and their frequency

Notes Frequency [Hz]
f c
1 Do C3 440× 2−9/12

f c
2 Do� C3� 440× 2−8/12

f c
3 Re D3 440× 2−7/12

f c
4 Re� D3� 440× 2−6/12

f c
5 Mi E3 440× 2−5/12

f c
6 Fa F3 440× 2−4/12

f c
7 Fa� F3� 440× 2−3/12

f c
8 Sol G3 440× 2−2/12

f c
9 Sol� G3� 440× 2−1/12

f c
10 La A4 440

f c
11 La� A4� 440× 21/12

f c
12 Si B4 440× 22/12

f c
13 Do C4 440× 23/12

...
...

...
...

For an original signal sampled at a rate of Fs sam-
ples per second, our present work will address a limit-
ted range of frequencies.

We divide the frequency range into frequency inter-
vals or bands [fj , fj+1], each having a semitone f c

j as
central frequency.

We next make a tiling of the time–frequency plane.
The centers of the tiles are the points (t c

j, k, f c
j ), where

t c
j, k =

(
q

f c
0

)
a−j
0

(
k +

1
2

)
, (2)

f c
0 = f c

1 /a0, and q = (a0 + 1)/[4(a0 − 1)].
In Fig. 1 we have an ideal tiling for an octave.
We briefly give the formulae to calculate the borders

of a tile (see Fig. 2). First set fj = 2 f c
j /(1+ a0). Let

Δfj = fj+1 − fj be the bandwidth.
Call [ tj,k, tj,k+1] the interval in time for the same

tile, and let
Δtj = tj,k+1 − tj,k. All tiles have the same area: we
have chosen Δfj Δtj = 0.5; we use the latter to obtain
Δtj . Now set tj,k = k Δtj .

With a little calculation, it can be shown that (i)
fj+1 = a0 fj,
(ii) the relative bandwidth Δfj/fj = a0−1 is constant,

f c
j

fj

fj+1

t c
j,ktj,k tj,k+1

Figure 2: A tile (j, k)

(iii) f c
j /Δfj = (a0 + 1)/[2(a0 − 1)],

(iv) f c
j is the midpoint of [fj , fj+1], and (v) t c

j, k is the
midpoint of [ tj,k, tj,k+1].

3. Construction of the Basis

Once the tiling is constructed, we need a basis that
is well localized over the tiles. We have chosen a real
Gabor (or Morlet) wavelet,

Ψ(t) = 2 b
√

π e−(b π t)2 cos (2 πf t). (3)

a waveform of fixed frequency inside a Gaussian enve-
lope, whose Fourier transform has fast decay on neigh-
bouring frequencies. It has often been used for music
analysis [6] because it reaches the theoretical limit to
time and frequency localization specified by Heisen-
berg’s uncertainty principle.

Appropriate dilations and displacements of the
wavelet will allow us to place it over any tile of the
partition, to obtain all the elements of the basis. How-
ever, it is impossible to confine a wavelet strictly to
a tile, because a function cannot be compactly sup-
ported both in time and frequency domain. We aim at
having most of the energy of the wavelet concentrated
on a tile, and have good decay on the neighbouring
tiles.

To construct our basis, we place a wavelet on the
center of each tile. For each tile (j, k) we have the cor-
responding wavelet Ψj, k(t), having central frequency
f = f c

j , and centered at time t = t c
j, k:

Ψj,k(t) = 2 bj

√
π e−(bj π (t−t c

j, k))2 cos (2 πf c
j (t− t c

j,k)).
(4)

The spectrum (absolute value of the Fourier trans-
form) of wavelet Ψj,k is the sum of two Gaussian func-
tions, one centered at u = f c

j (which is of interest) and
the other centered at u = −f c

j (of no interest):

∣∣∣Ψ̂j, k(u)
∣∣∣ = e−((u−f c

j )/bj)2

+ e−((u+f c
j )/bj)2

, (5)

where ĝ(u) =
∫∞
−∞ e− i 2 π u t g(t) dt is the Fourier

transform of g.
Notice that parameter bj is inversely proportional to

the width of the Gaussian in Eq. (4), and proportional
to the width of the Gaussian in Eq. (5). It controls
the balance between time and frequency localization.
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Figure 1: Tiling of the time(t) -frequency(f) plane for an octave.

Set bj = K Δfj . To priviledge frequency localization
over temporal localization, we have chosen K = 0.31.

At the top of Fig. 3 are shown two consecutive shifts
of the wavelet. The wavelet Ψj, k(t) has most of its
energy concentrated on the time interval [ tj,k, tj,k+1].
At the bottom of Fig. 3 are shown the spectra of two
wavelets belonging to neighbouring bands, i.e. having
central frequencies f c

j and f c
j+1 corresponding to two

consecutive semitones: observe the very small overlap.
The wavelets are sampled over a larger time interval

than the actual one, in order to avoid having clipped
wavelets, and the signal is padded with zeros at both
ends, so that their lengths are equal. The resulting
basis vectors are then normalized, and completed to
give a basis of the whole space. The vectors that are
added to complete the basis correspond to frequencies
lying outside the given frequency range.

4. Reduction of Correlation between Basis
Vectors

The correlation between 2 basis vectors is equal to
the correlation of their FFT’s (Parseval). This indi-
cates that basis vectors belonging to different bands
will have small correlation, because of the small over-
lap of their spectra.

We want to reduce the correlation of wavelets in
the same band. This will be done in 2 steps. First
the correlation of wavelets at odd shifts is radically
reduced through a modification of the tiling. Then
the correlation of wavelets at even shifts is reduced
through a modification of the wavelet itself.

A way to reduce the correlation of wavelets at odd
shifts is to make the small oscillations of the wavelet
be at a phase of 90◦ in neighboring displacements. The
frequency of these small oscillations is the central fre-
quency f c

j of the tile. Therefore Δtj , the width of the
tile measured in seconds, must be an integer number
of cycles of frequency f c

j plus 1
4 or 3

4 of a cycle, i.e.
the number of cycles should be L

2 + 1
4 , with integer L.

Since there are f c
j cycles per second, there are 2L+1

4

cycles in 2L+1
4f c

j
seconds.

This means that Δtj = 2 L+1
4 f c

j
. Recall that Δtj =

1
2 Δfj

, and substitute Δfj from Eq. (iii) at the end of
section 2.. We get

2 L + 1
4 f c

j

= Δtj =
1

2 Δfj
=

(a0 + 1)
4 (a0 − 1) f c

j

,

from which we obtain a0 = 1 + 1
L .

At this point, the orientation of this research needed
to be changed. From a true musical scale tiling of the
plane where the ratio of two consecutive frequencies
was equal to an irrational number a0, the focus was
shifted to a tiling of the plane where the ratio of two
consecutive frequencies is equal to the best rational
approximation 1 + 1/L of a0.

The fractions of the form 1 + 1/L, closer to a0 =
12
√

2 ≈ 1.05946, are 1 + 1/17 ≈ 1.05882 and 1 + 1/16 ≈
1.0625. We can therefore approximate the 12 bands of
an octave by 10 slightly narrower bands and 2 slightly
wider bands : instead of having a0

12 = 2, we have(
1 +

1
17

)10(
1 +

1
16

)2

≈ 1.9993725.

The error is negligible. We modify our tiling accord-
ingly, with one rational approximation for a0 in 10
bands of an octave, and another for 2 of the bands.
With this rational tiling, we have orthogonality be-
tween all wavelets at odd shifts in the same band.

We now strive to reduce correlations between basis
vectors at even shifts in the same band, indicated in
Table 2. In an iterative process, we select the higher
correlation between remaining basis vectors at even
distances in the same band, say 2n, and subtract the
projection of one of the vectors (multiplied by an care-
fully choosen factor between 0 and 1) from the other,
at distances 2n and −2n, in order to maintain symme-
try of the basis.

In 3 steps of this process, the correlations become
lower than 0.01, and we have calculated our modified
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Figure 3: Top: two neighbouring wavelets in time, for
the same note. Bottom: spectra of 2 wavelets corre-
sponding to 2 consecutive notes

wavelet Ψ∗. By placing it on each tile of the rational
tiling, we now obtain a modified basis. Let A be the
matrix whose columns are the basis vectors. If we
can find positive constants a, and b, such that for all
vectors x,

a ‖x‖2 ≤ ‖Ax‖2 ≤ b ‖x‖2 , (6)

then our basis is stable. It can be proved that the sums
of all correlations between one basis vector and all the
other basis vectors is less that 0.5, and this ensures
that the basis is stable.

The modified wavelet is plotted at the top of Fig.
4. At the bottom of the same figure are the spectra
of 2 modified wavelets on consecutive bands, revealing
good frequential localization. Our basis looks much
like an ideal filter, with the added property that cor-
relations between basis vectors are very low.

Table 2: Correlations between basis vectors at m
shifts.

m Correlation
±1 0
±2 -0.62
±3 0
±4 0.15
±5 0
±6 -0.014
±7 0
±8 0.0005
±9 0
±10 -0.0000071
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t c
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∣∣∣

Figure 4: Top: Modified wavelet. Bottom: Spectra
of 2 modified wavelets corresponding to 2 consecutive
notes
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5. Tests and Discussion

Generally Gabor frames are not stable under a per-
turbation of the tiling constants, that is, even for ar-
bitrarily small changes of the parameters the frame
property can be lost. However, Feichtinger et al. [4]
proved that this is not the case when the envelope is
Gaussian; the fast decay of the Gaussin prevents the
system from losing its properties. That is, our rational
approximation of an irrational tiling does not destroy
the good properties of the original basis.

We tested our algorithm on a bass guitar recording
of 7 notes, which belong to an arpeggio in the key of
C major going up one octave, and down: (do, mi, sol,
do, sol, mi, do) or (C3, E3, G3, C4, G3, E3, C3). The
sampling frequency was 5512.5 samples per second, the
audio recording is half a second. We constructed a ba-
sis covering 3 octaves, and calculated the coefficients
of this signal in terms of our basis. In Fig. 5 we show
a grayscale map of the coefficients, displayed on the
time-frequency tiling, where each coefficient is shown
as a shade on its own tile. Darker shades stand for
higher absolute values. Frequencies are given on a log-
arithmic scale, and the total time of the tiling is 0.5
sec.

Our basis discriminates the fundamental notes (and
the overtones) perfectly well. In the same figure, we
often find, for the same frequency, an alternating suc-
cession of large and small coefficients; the reason is
that two bases having the same frequency and situ-
ated at odd shifts are orthogonal – see Table 2. The
attack of notes are also clearly distinguishable. Notice
that most coefficients have a light shade: this indicates
a sparse representation of the signal, and the suitabil-
ity of our bases for signal compression, which we will
address in future work.

The basis has excellent frequential localization and
has good time localization. When applied to a signal,
groups of larger coefficients corresponding to the fun-
damental notes look very much like a music score. This
opens a wide scope in music processing: it includes a
new model for music signals, helps to understand the
music played, and paves the way for various interesting
multimedia applications.
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Figure 5: Map of coefficients for arpeggio displayed on the time-frequency tiling. See text.
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