
Morphic 3: The Future of GUIs

Juan M. Vuletich

CaesarSystems LLC

juan@jvuletich.org

www.jvuletich.org

Abstract

Morphic is the GUI framework in Squeak and Self. It was

born simple and powerful. However, it is aging and it can

be enhanced. This talk presents the current status of a

development effort to redesign Morphic in Squeak. Besides

a massive cleanup, there are two main ideas. The first one is

to give each morph its own coordinate system. The second

idea is to be completely agnostic about display size or

resolution. The result are applications that are simpler to

develop and look better on any display.

Keywords Morphic; GUI frameworks; coordinate systems

1. Introduction

Application developers constantly face the need to develop

user interfaces for their applications. Many of the problems

that need to be solved appear again and again. Therefore,

pre made libraries and frameworks were developed to help

on these problems, usually as part of programming tools.

Most of them are tied to specific operating systems, and

almost all of them consist of a pre made set of widgets. In a

unique manner, Morphic puts widgets and graphics on

equal footing. This gives unparalleled flexibility for

widgets, and high level, powerful abstractions for graphic

objects, in a simple, integrated framework. The Morphic

framework in Squeak is the only GUI and graphics toolkit

that allows building complex applications, including both

conventional looking widgets and distinct, unique graphic

objects, allowing the programmer to fully control de

behavior and the look, up to the pixel, in a high level object

oriented programming language.

2. Talk description

Morphic is the GUI framework in Squeak. It was originally

developed as part of the Self project and later ported to

Squeak. Designed with the ideas of simplicity and

uniformity that are central to Smalltalk, it is both simpler

and more powerful and general than regular window

managers and widget toolkits. However, it is aging. Some

of its problems were shown by its creators themselves, such

as the lack of a coordinate system at each graphic object

(morph). Others, such as code becoming too complicated,

and the dependencies upon the applications built with it,

were the result of the lack of good quality control for the

code included in Squeak. Yet others were good decisions at

their time, but it is time to move on. This talk presents the

current status of a development effort to redesign Morphic.

There are two main ideas. The first one is to give each

morph its own coordinate system. These should not be

restricted to Cartesian. Handling the coordinate systems

applications might need in the framework itself will reduce

and simplify the code of those applications. The second

idea is to be completely agnostic about display size or

resolution. This means the designer of a GUI should not

know or be concerned about a possible size in pixels for his

work, and the rendering should be done in high quality on

whatever display the user has.

3. The limitations of Morphic

Any application that goes beyond widgets on a form needs

to handle its own specific coordinate systems. Some

examples are:

• Linear coordinate systems on graphics and photo

editors, audio editors, music sequencers, video editors,

page editors, etc.

• Logarithmic scales on audio editors, technical graphs,

etc.

• Unusual scales like in written music (pentagrams)

• Geographic coordinate systems as in GIS.

However, none of the available tools goes beyond linear

coordinate systems and affine transforms. In the Morphic

implementation in Self, every morph defined a Cartesian

coordinate system for the placement of its submorphs. This

was lost in the Squeak version of Morphic, where every

morph shares the World’s coordinate system. This global

coordinate system is in pixels. This means that it is the

application programmer who must translate the points from

the coordinate system of his domain to the Display. This

leads to lots of duplicated effort, and to many bugs and

inconsistencies between applications.

4. Main design ideas for Morphic 3

The main design ideas for Morphic 3.0 are:

• Modeling of coordinate systems. A comprehensive

hierarchy of 2D coordinate systems is included. They

are not restricted to Cartesian or linear. Useful nonlinear

coordinate systems include polar, logarithmic,

hyperbolic and geographic (map like) projections.

• Separation of the handling of coordinate systems from

the morphs themselves. A morph should only need to

say “I want to use a log scale”, instead of needing to

convert every point it draws to World coordinates by

himself. Every Morph defines a space and coordinate

system. Its #drawOn: method and the location of its

submorphs are expressed in its own coordinate system.

This idea is from John Maloney, the designer of

Morphic 1.0 and 2.0. Class Morph has an instance

variable ‘coordinateSystem’ to hold an instance of the

MorphicCoordinateSystem hierarchy.

• Complete independency of Display properties such as

size or resolution. There is no concept of pixel. The GUI

is thought at a higher level. All the GUI is independent

of pixel resolution. All the rendering is anti aliased.

• Rendering is done applying “the signal processing

approach to anti aliasing”. Shapes and images are

modeled as continuous functions. They must honor the

Nyquist condition. They are sampled at pixel (or

subpixel) position for rendering.

• A Morph is placed somewhere in an owner. Class

Morph has an instance variable ‘location’ to hold an

instance of MorphicLocation. A MorphicLocation

specifies a position, extent, and rotation angle expressed

in the owner’s coordinate system. Separating them eases

the moving, zooming and rotation of morphs. The user

can easily move, zoom and rotate morphs. Please note

that we are talking about zooming and not resizing.

• In general, morphs are not resizeable. The general

operation available to the user is called zooming. The

zoom is defined by the extent (width/height) in the

location of the morph. The user can modify the location

of any morph. However, the size of a morph is defined

by its own coordinate system and this is generally not

modifiable by the user. If some morph also wants to

offer the user the possibility of modifying the coordinate

system (and hence the size), it is its own responsibility.

• All coordinates are Float numbers. This is good for

allowing completely arbitrary scales without significant

rounding errors.

• The Morph hierarchy is not a hierarchy of shapes.

Morphs don't have a concept of a border or color. There

is no general concept of submorph aligning. A particular

morph may implement these in any way that makes

sense for itself.

5. About the presenter

Juan Vuletich is senior developer at CaesarSystems. He has

worked as a Smalltalk developer for over ten years,

including an internship with Alan Kay’s group at Disney.

He is an active member of the Squeak community. His

contributions include the OS/2 port of Squeak, the JPEG

reader, and the PhotoSqueak image processing framework.

He managed the Morphic Team, and is now developing

Morphic 3.0. He holds a Ms.Sc. in Computer Science from

the University of Buenos Aires.

